How to Query Tables from Lake Database Using Serverless SQL Pool in Azure Synapse | Azure Synapse Analytics Tutorial

Query Lake Database Tables Using Serverless SQL Pool in Azure Synapse

How to Query Tables from Lake Database Using Serverless SQL Pool in Azure Synapse

📘 Overview

In Azure Synapse Analytics, a Lake Database created using Spark pools can be queried directly using Serverless SQL Pools. This allows seamless integration of big data stored in Data Lake with familiar T-SQL syntax for reporting and analytics without data movement.

🎯 Why Query Lake Databases with Serverless SQL?

  • No need to provision or manage compute resources
  • Familiar T-SQL interface for querying big data
  • Cost-effective pay-per-query model
  • Supports querying Delta, Parquet, and CSV formats

🛠️ Step-by-Step: Querying Spark-Created Tables

✅ Step 1: Create Table in Lake Database via Spark (Optional)

%%spark
CREATE TABLE lakehouse.customer (
  id INT,
  name STRING,
  country STRING
)
USING DELTA
LOCATION 'abfss://datalake@youraccount.dfs.core.windows.net/lake/customer'

✅ Step 2: Confirm Table Appears in Lake Database

Go to Synapse Studio > Data > Lake Database and confirm the table is visible under the specified database.

✅ Step 3: Query the Table Using Serverless SQL

-- Use Serverless SQL Pool
SELECT TOP 10 * 
FROM [YourLakeDB].[dbo].[customer];

✅ The table is accessible through the built-in metadata and requires no external table definition.

📌 Tips

  • Ensure Spark and SQL pools have access to the same storage and metadata
  • Use TOP or WHERE clauses for performance optimization
  • Lake DB tables should be created under Spark with valid Delta/Parquet paths

📈 Use Cases

  • Ad-hoc querying of curated data lakes
  • Feeding Power BI dashboards directly from Lake DB
  • Joining lake tables with Serverless SQL objects like external tables or views

📺 Watch the Video Tutorial

📚 Credit: Content created with the help of ChatGPT and Gemini.